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ABSTRACT: Predictions are carried out using strain-coupling theory for four steady
flows: steady shear, steady planar extension, steady uniaxial extension, and steady
equibiaxial extension. The general features of the steady flow predictions are compared
with the general characteristics of experimental steady flow data. q 1997 John Wiley &
Sons, Inc. J Appl Polym Sci 64: 689–697, 1997
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INTRODUCTION in steady flows are reviewed in the fourth section,
and deformation fields and viscosity ratios for the
various steady flows are presented in the fifth sec-Integral constitutive equations provide a valuable
tion. Predictions of the strain-coupling model formethod of describing the nonlinear viscoelastic
the different types of steady flows are presentedbehavior of polymeric fluids. For example, one of
in the final section, and the general features ofthe more useful single-integral constitutive mod-
these predictions are compared with the generalels is the K-BKZ constitutive equation. In this
characteristics of the experimental data.constitutive theory, it is assumed that the influ-

ence of each strain increment on the stress is inde-
pendent of other strain increments. To overcome

EQUATIONS FOR STRAIN-some of the deficiencies of the K-BKZ theory, a
COUPLING THEORYsomewhat more general integral model, the

strain-coupling model, has been proposed.1–4 In
For the strain-coupling model, the extra stress Sthis constitutive theory, it is assumed that the
is described by the following equations:influence of each strain increment on the stress is,

in general, dependent on other strain increments,
and an approximate analysis of this strain-cou- S Å *

`

0
Ff1(s , I , II )

pling effect is developed. The objective of this arti-
cle was to examine further some of the predictive
capabilities of the strain-coupling theory by con- / *

`

0
f3{s1 , s , I (s1)} ds1G [N (s ) 0 I ] ds

sidering various types of steady flows.
The equations for the strain-coupling theory

are presented in the second section of the article, / *
`

0
[f2(s , I , II ) ] [N01(s ) 0 I ] ds (1)and a modified evaluation scheme for the material

functions is discussed in the third section. Some
f3(s1 , s , 0) Å 0 (2)previous predictions of the strain-coupling theory
I Å tr[N 0 I ] (3)

II Å 1
2[I2 0 tr (N 0 I )2]Correspondence to: J. S. Vrentas.
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690 VRENTAS AND VRENTAS

N (s ) Å C01
t (t 0 s ) (5) f3{s1 , s , I (s1)} Å b(s1 , s )K[I (s1)] (11)

N01(s ) Å Ct (t 0 s ) (6) h (I ) Å H*(I ) / K (I ) (12)

For these equations, t is the present time; s , the b(s , s1) Å 9
1 0 k

∑
N

iÅ1

ai

li
e8s /lie09s1/li s1 ú s (13)

backward running time; Ct (t 0 s ) , the right Cau-
chy–Green tensor relative to time t ; I , the iden-

b(s , s1) Å 0 9k
1 0 k

∑
N

iÅ1

ai

li
e09s /lie8s1/li sú s1 (14)tity or unit tensor; and f1 , f2 , and f3 , three sca-

lar-valued material functions. The K-BKZ model
is a special case of the strain-coupling theory with K (I )

8(1 0 k )
Å h (4I ) 0 h (I )

2
(15)f3 Å 0. It is clear that the strain-coupling theory

offers the possibility of better predictive capabili-
ties for viscoelastic flows than does the K-BKZ I* Å I (1 / 2e )

1 / e
/ eII

1 / e
(16)theory because it represents a reduced version of

simple fluid theory with strain-coupling effects in-
cluded.1 For the K-BKZ model, coupling of strains In these equations, k and e are constants and
is assumed to be negligible. ai and li are constants in the usual expression

From the above equations, it is evident that for m (t ) :
the strain-coupling model can be used to describe
nonlinear rheological behavior if the material

m (t ) Å ∑
N

iÅ1

aie0 t /li (17)functions f1 , f2 , and f3 can be determined for the
particular material of interest. Specific equations
have been proposed4 for the determination of

The constant e can be evaluated from steady shearthese material functions for the special case of
data using the expressiona factorable strain-coupling model. If it can be

assumed that time–strain factorability is applica-
ble for a particular material, then the shear stress F0 N2(g

h
)

N1(g
h
) Gg

h
Å0

Å e

1 / e
(18)for a viscoelastic fluid can be written in the follow-

ing factored form for single-step shear strain
stress relaxation experiments:

where N1 and N2 are the first and second normal
stress differences and g

h
is the shear rate for thes(g1 , t ) Å g1G (t )h (g2

1) (7)
steady shear flow. In addition, the constant k can
be calculated from the following expressionsIn this equation, g1 is the instantaneous shear
which are valid for low to moderate strain levels:strain applied at t Å 0; s(g1 , t ) , the shear stress

for t ú 0; G (t ) , the shear stress relaxation modu-
lus of linear viscoelasticity; and h (g2

1) , a mono-
k Å 2

3
[01 0 j]
[1 0 j]

(19)tonically decreasing function of strain with h (0)
Å 1. For some materials, the factored form given
by eq. (7) is valid for a wide range of g1 , and, for
many materials, time–strain factorability is valid

j Å

K (9g2)
8(1 0 k )

K (g2)
8(1 0 k )

(20)
at least for sufficiently low values of g1 . For the
factorable strain-coupling model, the following
equations have been proposed for the material
functions f1 , f2 , and f3

4 : where g is the applied shear strain in a step strain
experiment. The calculation of k can be made
somewhat more explicit by noting that the quan-f1(s , I , II ) Å m (s )H*(I*)

1 / e
(8)

tity K /8(10 k ) [which is calculated from eq. (15)]
can generally be written in the following form for
low values of the strain g:f2(s , I , II ) Å 0 m (s )eH*(I*)

1 / e
(9)

m (s ) Å 0 dG (s )
ds

(10) 0 K (g2)
8(1 0 k )

Å C (g2)p (21)
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STRAIN-COUPLING EFFECTS IN STEADY FLOWS 691

strain stress relaxation experiments and a small
amount of data from steady shear experiments.
For materials for which time–strain factorability
is applicable, the following procedure can be used
to determine the material functions, f1 , f2 , and
f3 of the strain-coupling theory:

1. A series of single-step shear strain stress
relaxation experiments is carried out on
the material of interest over an appro-
priate range of g1 , the applied shear strain.
The shear stress vs. time data from such
experiments can be used with eq. (7) to
determine G (t ) ( from the linear part of the
data) and h (I ) ( from the nonlinear part of
the data). The G (t ) data can be used in eq.
(10) to yield m (t ) , and the parameters ai

and li can be determined from eq. (17) us-
ing standard procedures.

2. The h (I ) data can be used in eq. (15) toFigure 1 Graphical representation of dependence of
determine the function K (I ) / (1 0 k ) overk on exponent p as described by eq. (22).
an appropriate range of I .

3. The K (I ) / (1 0 k ) results at low strains canHere, C is a constant and p ú 0. Consequently,
be used with eq. (21) to determine the ex-eq. (19) can now be written as follows:
ponent p . A value of the parameter k for
the system of interest can then be calcu-

k Å 2
3 F01 0 9p

1 0 9p G (22) lated using eq. (22).
4. The results of steps 2 and 3 are combined

to determine K (I ) over the complete range
so that k can be simply evaluated once p is deter- of I for which K (I ) / (10 k ) values are avail-
mined. The dependence of k on the exponent p able.
is illustrated in Figure 1. The new procedure for 5. Results for ai , li , and k can be used in eqs.
directly calculating k from eq. (22) (essentially (13) and (14) to calculate b(s , s1) , and f3using only single-step data) gives values of k can then be computed from the known K (I )
which are comparable to those calculated using and b(s , s1) from eq. (11).
double-step shear strain stress relaxation experi- 6. Results for K (I ) and h (I ) can be used in eq.
ments.4 For example, for an IUPAC branched low- (12) to calculate H*(I ) and, thus, H*(I*).
density polyethylene sample, a value of k Å 1.51 7. The ratio N2 /N1 near g

h
Å 0 can be mea-

is calculated using double-step data and a value sured using steady shear experiments at
of k Å 1.62 is computed using eq. (22). For a poly- small shear rates. Data taken on cone-and-
styrene–dibutyl phthalate solution, double-step plate viscometers and on parallel-plate vis-
data yield a value of k Å 0.86 and a value of k cometers can be used to determine the ratioÅ 0.90 is calculated from eq. (22). Consequently, N2 /N1 , and the constant e can be calculated
it appears that good estimates of k can be derived from eq. (18) using the limiting value of
without using double-step experiments. The N2 /N1 at zero shear rate.
above set of equations can be used to determine 8. The material functions f1 and f2 can be
the material functions f1 , f2 , and f3 , and the calculated using eqs. (8) and (9) with I*
evaluation scheme for these material functions is defined by eq. (16).
summarized in the next section.

The present version of the strain-coupling the-EVALUATION OF MATERIAL FUNCTIONS
ory is, of course, not a predictive theory since sin-
gle-step stress relaxation data and a smallThe material functions of the strain-coupling the-

ory can be evaluated using single-step shear amount of steady shear data are needed to carry
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692 VRENTAS AND VRENTAS

out the determination of the material functions. coupling theory but not for the K-BKZ theory be-
cause it yields unbounded stresses in steady elon-However, such data are not particularly difficult

to obtain for a given material. Furthermore, eval- gational flows. The h (I ) function given by eq. (24)
can be used with the K-BKZ theory, but it pro-uation of the material functions for the strain-

coupling theory requires no more data than are duces a pronounced maximum in the shear
stress–shear rate curve and, in general, insuffi-needed for evaluation of the material functions

for the K-BKZ theory. cient strain hardening. Consequently, the finite
memory of the strain-coupling model allows a
greater choice for h (I ) and, hence, the possibility
of increasing the strain hardening and reducingPREVIOUS STEADY FLOW PREDICTIONS
the shear thinning. The general approach used
previously will be applied below in the examina-The strain-coupling constitutive equation has
tion of four steady flows: steady shear, steady pla-been previously used to analyze various aspects
nar extension, steady uniaxial extension, andof the following experiments: double-step shear
steady equibiaxial extension. The steady shearstrain stress relaxation experiments1–3,5 ; start-up
viscosity and the first steady planar extensionaland cessation flow experiments6,7 ; finite ampli-
viscosity were considered in the previous study.9tude oscillatory experiments8; extensional flow
In this study, we consider predictions for the sec-step strain experiments4; and steady shear and
ond steady planar extensional viscosity, for thesteady planar extension experiments.9 To put the
steady uniaxial extensional viscosity, and for thepredictions presented in this study in proper con-
steady equibiaxial extensional viscosity.text, it appears useful to summarize previous pre-

In the next section, deformation fields and vis-dictive results of strain-coupling theory for steady
cosity ratios are presented for the four steadyflows.
flows considered here. The four flows and five vis-In a previous investigation of strain-coupling
cosity ratios are summarized in Table I. In thistheory,9 it was found that it is necessary to place
table, the zero subscript refers to a zero deforma-some restrictions on the memory of the fluid to
tion rate. Laun and Schuch10 presented shear andavoid unbounded integrals for exponential histor-
elongational flow data for a polyisobutylene sam-ies and to exclude the possibility of having nega-
ple and for a low-density polyethylene IUPAC Xtive viscosities for steady shear flows. The mem-
sample. They presented data for normalized ver-ory of the fluid can be limited by limiting the
sions of the five viscosities listed above. From therange of integration for the material, and, as is
transient viscosity data taken at similar deforma-illustrated below, the finite memory of the fluid
tion rates, it seems reasonable to surmise that thecan be determined directly from previously deter-
steady-state viscosity ratios should be ordered asmined rheological properties of the fluid. The ap-
follows for polyethylene under comparable defor-proach used in the strain-coupling theory for trun-
mation conditions:cating integrals cannot be used for the K-BKZ

model unless additional assumptions are intro-
duced. The fact that the strain-coupling model hU

hU0
ú S hE

hE0
D

1

ú hB

hB0
ú h

h0
ú S hE

hE0
D

2

(25)suggests a reasonable way to limit the memory of
the fluid provides flexibility in the type of h (I )
functions which can be used with the model. For

The position of hB /hB0 is inferred from the polyiso-example, consider the following two expressions
butylene data. For the polyisobutylene system, itfor h (I ) with constant parameters a or d:
is possible to infer the same pattern from the tran-
sient viscosity data with the exception that (hE /

h (I ) Å 1
1 / aI1/2 (23) hE0)2 is slightly greater than h /h0 . The major ob-

jective of this article was to see if the strain-cou-
pling theory can predict the ordering presentedh (I ) Å 1

1 / dI
(24)

in eq. (25) for the five viscosities for a low-density
polyethylene sample subjected to the four defor-
mation histories described above. It is necessaryUtilization of eq. (23) enhances the possibility of

strain hardening in steady elongational flows and to emphasize that the ordering presented in eq.
(25) for steady flows has been surmised from datareduces the level of the shear thinning in steady

shear flows. This equation can be used for strain- on transient flows.
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STRAIN-COUPLING EFFECTS IN STEADY FLOWS 693

Table I Summary of Viscosity Ratios

Flow Viscosity Ratio Symbol

Steady shear Steady shear viscosity ratio h

h0

Steady planar extension First steady planar extensional viscosity ratio S hE

hE0
D

1

Steady planar extension Second steady planar extensional viscosity ratio S hE

hE0
D

2

Steady uniaxial extension Steady uniaxial extensional viscosity ratio hU

hU0

Steady equibiaxial Steady equibiaxial extensional hB

hB0
extension viscosity ratio

DEFORMATION HISTORIES AND h

h0
Å *

`

0
xe0xF1(x ) dx (31)VISCOSITY RATIOS

where F1(x ) is defined by the following expres-In this section, we present the deformation fields
sion:for the four steady flows under consideration and

the viscosity ratios for the five steady viscosities
of interest here. In all cases, a single relaxation F1(x ) Å h (z2x2) 0 FK (z2x2)

1 0 k G (1 0 k )
time l will be used in the calculation of the mate-
rial functions. Also, the following dimensionless
forms of the backward running times are utilized

/ *
x

0

9K[ (zx * )2]
1 0 k

exp[08(x 0 x * ) ] dx *in the expressions for the viscosity ratios:

0 *
`

x

9kK[ (zx * )2]
1 0 k

exp[09(x * 0 x ) ] dx * (32)
x * Å s1

l
(26)

z Å g
h
l (33)

x Å s
l

(27)
The deformation dependence of F1(x ) is obviously
suppressed in eq. (31).

The following equations describe the deforma-The following equations describe the deformation
tion field for steady planar extension with elonga-field for a steady shear flow with a shear rate g

h
:

tion rate e
h
:

[N (s ) 0 I ] Å Fg
h

2s2 g
h
s 0

g
h
s 0 0

0 0 0
G (28)

[N (s ) 0 I ] Å F e2e
h
s 0 1 0 0
0 e02e

h
s 0 1 0

0 0 0
G (34)

[N01(s ) 0 I ] Å F 0 0g
h
s 0

0g
h
s g

h

2s2 0
0 0 0

G (29)
[N01(s ) 0 I ] ÅF e02e

h
s 0 1 0 0
0 e2e

h
s 0 1 0

0 0 0
G (35)

I Å 0II Å g
h

2s2 (30) I Å 0II Å e2e
h
s / e02e

h
s 0 2 (36)

The two viscosity ratios can be expressed as fol-In addition, the viscosity ratio can be expressed
as follows: lows:
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694 VRENTAS AND VRENTAS

S hE

hE0
D

1

Å *
`

0
e0xF2(x )

sinh 2yx
2y

dx (37)
hU

hU0
Å *

`

0
e0xF4(x )

[e2yx 0 e0yx]
3y

dx

0 e

1 / e *
`

0
e0xFh (I*) 0 HK (I*)

1 0 k J (1 0 k )GS hE

hE0
D

2

Å *
`

0
e0xF3(x )

[1 0 e02yx]
2y

dx

1 [e02yx 0 eyx]
3y

dx (47)
/ e

1 / e *
`

0
e0xFh (qx ) 0 HK (qx )

1 0 kJ
where

(1 0 k )G [e2yx 0 1]
2y

dx (38)
F4(x ) Å h (I*)

1 / e
0 FK (I*)

1 0 k G (1 0 k )
1 / e

qx Å e2yx / e02yx 0 2 (39)

/ *
x

0

9K[I (x * ) ]
1 0 k

exp[08(x 0 x * ) ] dx *
F2(x ) Å h (qx ) 0 FK (qx )

1 0 kG (1 0 k )

0 *
`

x

9kK[I (x * ) ]
1 0 k

exp[09(x * 0 x ) ] dx * (48)
/ *

x

0

9K (qx =)
1 0 k

exp[08(x 0 x * ) ] dx *

I (x ) Å e2yx / 2e0yx 0 3 (49)

II (x ) Å e02yx 0 2e2yx / 2eyx 0 4e0yx / 3 (50)0 *
`

x

9kK (qx =)
1 0 k

exp[09(x * 0 x ) ] dx * (40)

I* Å 1 / 2e
1 / e

I (x ) / e

1 / e
II (x ) (51)

F3(x ) Å F2(x ) 0 eh (qx )
1 / e

For steady equibiaxial extension with elonga-
tion rate zg , it is clearly possible to consider the/ e

1 / e FK (qx )
1 0 kG (1 0 k ) (41)

equibiaxial extension as a special type of a uniax-
ial experiment with a compression in the stretch-

y Å e
h
l (42) ing direction. Hence, the steady equibiaxial exten-

For steady uniaxial extension with elongation sional flow is described by eqs. (43) – (51) with a
rate e

h
, the deformation field is described by the value of e

h
Å 02zg . It is thus possible to compute

following equations: equibiaxial results from the uniaxial equations by
using a negative value of e

h
. The deformation rates

and dimensionless deformation rates for the four[N (s ) 0 I ]
flows are summarized in Table II.

The five viscosity ratios can thus be calculated
using eqs. (31), (37), (38), and (47) with the in-Å F e2e

h
s 0 1 0 0
0 e0e

h
s 0 1 0

0 0 e0e
h
s 0 1

G (43)
finite integrals in these equations being termi-
nated at a finite value of x . The upper limits in
these integrals are determined using the charac-

[N01(s ) 0 I ] teristics of F1(x ) , F2(x ) , F3(x ) , and F4(x ) . Each
of these functions is positive at x Å 0 and each
goes to zero at some finite value of x . Since theseÅ F e02e

h
s 0 1 0 0
0 e e

h
s 0 1 0

0 0 e e
h
s 0 1

G (44)
four functions are essentially weighting functions
for the strains in the material, it is reasonable to
suppose that strains for larger values of x do not

I Å e2e
h
s / 2e0e

h
s 0 3 (45) contribute to the stress. Such strains are effec-

tively eliminated from the stress calculation byII Å e02e
h
s 0 2e2e

h
s / 2e e

h
s 0 4e0e

h
s / 3 (46) using finite values of x for the upper limits in the

integrals in eqs. (31), (37), (38), and (47). In
general, the FI (x ) functions are coefficients for theThe viscosity ratio is given by the expression
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Table II Summary of Deformation Rates

Dimensionless Independent Variables for
Flow Deformation Rate Deformation Rate Viscosity Ratio

Steady shear k, azg
h

z Å g
h
l

Steady planar extension k, y, ae
h

y Å e
h
l

(first viscosity)
Steady planar extension k, e, y, ae

h
y Å e

h
l

(second viscosity)
Steady uniaxial k, e, y, ae

h
y Å e

h
l

extension
Steady equibiaxial k, e, w, azh w Å zh l

extension

strains computed using [N (s )0 I ] in eq. (1). This presented in Figure 2 (for e Å 0.25, k Å 1.5, and
a Å 0.1), in Figure 3 (for e Å 0.25, k Å 1.5, andis the case for F3(x ) and F4(x ) . However, in some

cases (steady shear and the first viscosity for a Å 0.2), and in Figure 4 (for e Å 0.25, k Å 7
8, and

steady planar extension), the components of N (s ) a Å 0.1). The predictions in Figures 2 and 3
0 I and N01(s ) 0 I have the same magnitude, should be generally applicable to a low-density
and, hence, the coefficient of N01(s ) 0 I is in- polyethylene sample. Three of the viscosities in
cluded in F1(x ) and F2(x ) . A separate truncation
procedure is applied for each strain component,
although the upper limit in the integral will be
the same for all strains if only the coefficient of
N (s ) 0 I is included in the FI (x ) . The truncation
method is applied here only for steady flows. A
similar approach must be used for transient defor-
mations as they approach the steady-state limit.
An example of the x and deformation dependence
of F2(x ) is presented elsewhere.9

RESULTS AND DISCUSSION

Predictions for the five viscosity ratios considered
in this study are presented below with h (I ) calcu-
lated using eq. (23). For this choice for h (I ) , the
five viscosity ratios depend on two, three, or four
variables. The variable dependence of each of the
viscosity ratios is summarized in Table II. For this
study, predictions were carried out for one value
of e (0.25), for two values of k ( 7

8 and 1.5), and for
two values of a(0.1 and 0.2). A value of e Å 0.25
is close to the e value calculated for a low-density

Figure 2 Dependence of viscosity ratio on dimen-polyethylene sample.4 In addition, a value of k sionless deformation rate for e Å 0.25, k Å 1.5, and aÅ 1.5 represents a branched low-density polyeth- Å 0.1. Curve 1, uniaxial extensional viscosity ratio;
ylene sample, and a value of k Å 7

8 represents a curve 2, first planar extensional viscosity ratio; curve
linear polystyrene solution.3 3, equibiaxial extensional viscosity ratio; curve 4, shear

Predictions for the dependence of the viscosity viscosity ratio; curve 5, second planar extensional vis-
cosity ratio.ratio on the dimensionless deformation rate are
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these two figures exhibit significant strain hard-
ening (an increase in viscosity with increasing de-
formation rate) and two essentially exhibit only
shear thinning (a decrease in viscosity with in-
creasing deformation rate). In addition, the order-
ing of the steady viscosity ratios in these two fig-
ures for sufficiently high deformation rates is ex-
actly the same as that surmised above from
transient experiments [eq. (25)] . Hence, the gen-
eral features of the predictions of the strain-cou-
pling model for a low-density polythylene-type
system (with e Å 0.25 and k Å 1.5) are in good
agreement with general characteristics surmised
from experimental data for a low-density polyeth-
ylene sample. It is further evident from Figures
2 and 3 that the effect of increasing a, with e and
k fixed, is to decrease the level of strain hardening
and to increase the level of shear thinning.

Comparison of Figure 4 with Figures 2 and 3
indicates that the results for k Å 7

8 differ in two
ways from those for k Å 1.5. First, four of the
viscosities for kÅ 7

8 exhibit significant strain hard-
ening as compared with three for k Å 1.5. Only

Figure 4 Dependence of viscosity ratio on dimen-
sionless deformation rate for e Å 0.25, k Å 7

8, and a

Å 0.1. Curves are defined as in Figure 2.

the shear viscosity ratio for k Å 7
8 exhibits only

shear thinning whereas both h /h0 and (hE /hE0)2

essentially exhibit only shear thinning for kÅ 1.5.
A second difference involves the ordering of the
viscosity ratios for sufficiently high deformation
rates for k Å 7

8. For dimensionless deformation
rates near unity, the ordering of the viscosity ra-
tios for k Å 7

8 is as follows:

S hE

hE0
D

2

ú S hE

hE0
D

1

ú hU

hU0
ú hB

hB0
ú h

h0
(52)

If this ordering is compared with the result for
k Å 1.5 [eq. (25)] , it is evident that the major
difference is that the viscosity ratio (hE /hE0)2 is
greatest for k Å 7

8 and least for k Å 1.5. It is not
known whether the ordering in eq. (52) is valid
for a polystyrene solution with k Å 7

8 since the
necessary data do not exist. It is, of course, possi-
ble that this predicted ordering is an incorrect
prediction of strain-coupling theory. With the ex-
ception of the position of (hE /hE0)2 , the orderingFigure 3 Dependence of viscosity ratio on dimen-
presented in eq. (52) is reasonable. In addition,sionless deformation rate for e Å 0.25, k Å 1.5, and a

Å 0.2. Curves are defined as in Figure 2. as noted above, the ordering in eq. (25) represents
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